
06/07: Embedded
architectures &
MCU datasheets

Review
⬢ Sensors and actuators (I/O devices) can be

analog or digital
⬢ MCUs can read from/write to I/O devices

⬡ GPIO pins (for digital signals and PWM)
⬡ DACs, ADCs (for analog signals)
⬡ This enables us to use software to interact

with the physical world

2

General purpose computing and I/O
When you run code on a computer:

⬢ How is the program able to read input
(user/keyboard input or files)?

⬢ How is the program able to create output (write
to files/draw pixels on a screen)?

Operating system provides interfaces that translate
commands into appropriate hardware actions

3

MCUs are varied
Wikipedia list

Variations in:

⬢ Word size
⬢ Memory
⬢ I/O and peripherals

Without an OS, it is the programmer’s role to
understand the specifics of the MCU hardware

4

https://en.wikipedia.org/wiki/List_of_common_microcontrollers

Architecture
The organization and design of a computer

Defines the SW/HW interface

⬢ Instruction Set Architecture (ISA): machine code, word
sizes, memory addresses, data formats, registers

⬢ Microarchitecture (implementation of ISA): CPU internals,
memory hierarchy

⬢ Systems design: all other HW support
5

How software you write becomes
code running on an CPU
Code you write

Assembly Code

Machine code

6

Compiler

Assembler

Program

7

Assembly

Memory address of instruction

Assembly instructions

8

Instruction in machine code (hex)

Types of data

9

registers

immediates

memory addresses
(raw or computed from
registers/immediates)

Registers

10

⬢ Small pieces of fast memory
⬢ Usually 8-, 16-, 32- or 64-bits
⬢ Many purposes on CPUs and MCUs:

⬡ Storing temporary data for execution
⬡ Addressing memory
⬡ Configuring peripherals (Lab 3)

11

Types of operations

12

register operations

stack operations

memory loads/stores

control logic

Stack
LIFO (last-in, first-out) data structure

Keeps track of information for execution:

Local variables

Return pointers

Grows “downward”

Stack Pointer (SP) points to latest value

Direction of
growth

Higher memory addresses

Lower memory addresses

SP→

13

What a processor needs to do:
Fetch an instruction from memory

Decode the instruction

Execute arithmetic and logical operations

Load/store values in Memory

Write back values to registers

Different CPUs do these in different orders/groupings
and in different ways 14

Cortex-M0+

15Image source

https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M0%20plus%20Processor%20Datasheet.pdf

Memory
Information stored in memory:

Code

Program data

Stack

Heap (dynamically allocated data)

Register file

Every location in memory has an address 16

Types of memory
Volatile - Gets erased when power gets turned off

RAM (DRAM, SRAM)

Non-volatile - Persists when power gets turned off

Flash

ROM (sometimes rewritable, like EEPROM)

17

Specifications
x-bit processor:

Data registers, data buses, words are that size

memory address may not be that size
Common for 8-bit CPUs to have 16-bit addresses (why?)

What are the implications for atomicity?

Harvard Architecture - code has separate memory space from data
(common in MCUs)

vs. Von Neumann - shared memory space (SAM D21 is Von Neumann)
18

Memory layout of SAMD 21 chip

19

How information gets onto an MCU
Bootloader

Firmware on the board that can interface with the
computer

Copies memory on upload

Hardware programmer
Special piece of hardware that connects to pins
directly and transfers using a protocol

20

Peripherals
Timers, ADCs, GPIO, etc

Controlled by special registers (different from CPU registers!)

You will see this in lab!

“Memory-mapped”: from CPU perspective, just like writing to
any other memory address

From MCU perspective, need controller hardware to
configure/send data to the right place

21

22

23

24

25

MCU datasheet example
Configure and write to DAC

Resources used in this
presentation
ARM Cortex M0+ devices generic user guide

ARMv6-M Architecture reference manual

26

https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7?token=
https://documentation-service.arm.com/static/5f8feef5f86e16515cdbf7e4?token=

Supplement: execution of
assembly

27

28

Cortex M0+ stack operations
push reglist - push the registers in reglist onto the stack
(highest value registers pushed first), decrements stack
pointer

pop reglist - pop the values on the stack into the registers
in reglist (lowest value registers popped first)

if SP is in reglist, branch to where SP is pointing after pop

29

Loads and stores
An instruction like ldr r1 [r2, #8] means:

⬢ Add 8 to the value in register r2
⬢ Interpret the result as a memory address
⬢ Take the value stored at that memory address

and put it in r1

(Similar with str, which is for storing values in
registers to memory addresses)

30

previous stack
LR

R0

R1

R2

2000 0000R3

R4

R5

R6

R7

31

PC

mem. address 20fc + 28 = 211c

value at that memory address

previous stack
LR

R0

R1

R2

2000 0000R3

R4

R5

R6

R7

32

PC
LR (R14) pushed first because 14 > 4

saved LR

saved R4

previous stack
LR

R0

R1

R2

2000 0000R3

(mem. value at
2000 0000)

R4

R5

R6

R7

33

PC

saved LR

saved R4

mem. address 2000 0000

previous stack
LR

R0

R1

R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

34

PC

saved LR

saved R4

previous stack
LR

R0

R1

0R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

35

PC

saved LR

saved R4

previous stack
LR

R0

1R1

0R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

36

PC

saved LR

saved R4

previous stack
LR

R0

1R1

0R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

37

PC

saved LR

saved R4

Compute R4-R2 and set
comparison flags

previous stack
LR

R0

1R1

0R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

38

PC

saved LR

saved R4

if r4 <= r2, jump to
instruction at 2116
(otherwise, keep going)

previous stack
LR

2R0

1R1

0R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

39

PC

saved LR

saved R4

previous stack
LR

2R0

1R1

1R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

40

PC

saved LR

saved R4

previous stack
LR

2R0

1R1

1R2

1R3

(mem. value at
2000 0000)

R4

R5

R6

R7

41

PC

saved LR

saved R4

previous stack
LR

2R0

1R1

1R2

2R3

(mem. value at
2000 0000)

R4

R5

R6

R7

42

PC

saved LR

saved R4

previous stack
LR

2R0

1R1

1R2

2R3

(mem. value at
2000 0000)

R4

R5

R6

R7

43

PC

saved LR

saved R4

jump to instruction at address 2108

previous stack
LR

2R0

1R1

1R2

2R3

(mem. value at
2000 0000)

R4

R5

R6

R7

44

PC

saved LR

saved R4

Compute R4-R2 and set
comparison flags

previous stack
LR

2R0

1R1

1R2

2R3

(mem. value at
2000 0000)

R4

R5

R6

R7

45

PC

saved LR

saved R4

if r4 <= r2, jump to
instruction at 2116
(otherwise, keep going)

previous stack
LR

3R0

1R1

1R2

2R3

(mem. value at
2000 0000)

R4

R5

R6

R7

46

PC

saved LR

saved R4

previous stack
LR

3R0

1R1

2R2

2R3

(mem. value at
2000 0000)

R4

R5

R6

R7

47

PC

saved LR

saved R4

previous stack
LR

3R0

2R1

2R2

2R3

(mem. value at
2000 0000)

R4

R5

R6

R7

48

PC

saved LR

saved R4

previous stack
LR

3R0

2R1

2R2

3R3

(mem. value at
2000 0000)

R4

R5

R6

R7

49

PC

saved LR

saved R4

previous stack
LR

3R0

2R1

2R2

3R3

(mem. value at
2000 0000)

R4

R5

R6

R7

50

PC

saved LR

saved R4

jump to instruction at address 2108

previous stack
LR

3R0

2R1

2R2

3R3

(mem. value at
2000 0000)

R4

R5

R6

R7

51

PC

previous LR

previous R4

jump to instruction at address 2108

Essentially, this code is doing a loop, running
the following computation:
r0 = r1 + r3
r2 = r2 + 1
r1 = r3
r3 = r0

And looping while r2 < r4 (so, r2 is a counter
and r0/r1/r3 are used to compute the next
fibonacci number). Going back to our original
code, this suggests that the value at r4
(memory location 2000 0000) is 12 (N), and
we’ll run 12 iterations of this loop

previous stack
LR

(final value of R0)R0

(final value of R1)R1

2000 00bcR2

(final value of R3)R3

(mem. value at
2000 0000)

R4

R5

R6

R7

52

PC

saved LR

saved R4

address 2116 + 8 = 2120

AFTER THE LOOP COMPLETES
(ble.n 2116 at instruction 210a is executed)

previous stack
LR

(final value of R0)R0

(final value of R1)R1

2000 00bcR2

(final value of R3)R3

(mem. value at
2000 0000)

R4

R5

R6

R7

53

PC

saved LR

saved R4

store final R3 value at address
2000 00bc

previous stack
LR

(final value of R0)R0

(final value of R1)R1

2000 00bcR2

(final value of R3)R3

saved R4R4

R5

R6

R7

54

PC saved LR

popping into PC branches to that
address (effectively returning
from a subroutine)

55

Pipelining slides (not used
this semester)

Sequential execution

images:
Flaticon.com

56

Pipelining

vs

images:
Flaticon.com

57

Pipeline hazards

images:
Flaticon.com

58

Avoiding (some) hazards using compilation

59

“
Can you summarize the

tradeoff between deep and
shallow pipelines and predict
which kind MCUs are more

likely to have?

60

