Project matching forms will be
sent out after class today
e Teams will be made up of 4
people
e You can choose one other
person to work with
e Matching will be done based
on project preference

11: Concurrency

‘ A preview: periodic tasks

n tasks each with a given period and worst case
execution time (for now assume same period)

(read and store sensor)

B | (do complex computation

on last sensor reading)

(log output to server)

‘ What'’s the problem with this?

blueTask { A i
. do stuff;
pet watchdog; } -
purpleTask {
. do stuff;

pet watchdog; }
goldTask {
. do stuff;
pet watchdog; } 3

‘ Blocking vs. non-blocking functions

Simplest task
scheduler:

void loop () {
blueTask() ;
purpleTask() ;
goldTask () ;

Blocking function: Non-blocking function:

void goldTask () { void goldTask() {

serverTask () ;

res = 0; res =
while (! res) { if (res) {

res = serverTask() ; // compute on res
} }
.. // compute on res }

‘ Blocking vs. non-blocking functions

never

bu
blue

Simplest task
cheduler:

1d 1
LS bai R

blueTask () ;
gets back here

ask pets watchdog

purpleTask () ;

goldTask () ;

Blocking function: Non-blocking function:
void goldTask() { void goldTask() f{
int res = 0; int res = serverSend()
mHénggehere if (res) {
res = serverSend () ; .. // compute on res
} Never.reaches here
.. // compute on res }
tWatchdog
Never reaches here

Waichdog et pet server hang is never detected!

hang successfully detected

0

How would you pet the
watchdog for a multitasked
system?

‘ Challenge mode

L ma mao

Time and date tales

‘ Imperative programs

(using book definition)

Computation is expressed as a sequence of
operations

Each step changes the state of memory on the
machine

10

‘ Threads

Individual imperative programs
that run concurrently and share
a memory space

On single-CPU systems,
technically only one thread is
executing at a given time, but
multiple may be “active”
(pending computation)

Memory (code, data, files)

1

0

What example of thread-like
behavior have we seen so far
in this class?

‘ Interrupts as threads

Code in memory

Stack

Program state
(local variables, etc)

Old PC

ISR

\

(From lecture 5)

Interrupt vector table

Interrupt type 1: code memory location 1
Interrupt type 2: code memory location 2

___——

13

‘ Interrupt’s view of execution

Code in memory Stack

SP

PC

ISR

14

‘ Main process’ view of execution

Before interrupt After interrupt

Code in memory Stack Code in memory Stack

SP

E> Main function E,‘> Main function Program state

(local
variables, etc)

Old PC

15

Main
function

ISR

Memory (code, data, files)

Main process Interrupt

¢ 3

Heap

16

0

What are the limitations of
having interrupts as the only
source of concurrency in
embedded programming?

‘ Cyclic Execution

Threading-like behavior without library/os/scheduler

“DIY concurrency”

Each task keeps track of the state it needs

void loop() {
poll inputs();
taskl();
task2();
task3();

}

18

0

Pros/cons to cyclic
execution?

void loop() {

‘ Multi-rate cyclic execution

Or even..

void loop() {

poll inputs();
taskl();
poll inputs();
task2();
poll inputs();
task3();

poll inputs();
taskl stepl();
poll inputs();
taskl step2();
poll inputs();
task2 stepl();
poll inputs();
task3 stepl();

21

‘ Cyclic Execution timing analysis

void loop() {
poll inputs();
taskl();
task2();
task3();

}

Worst-case time:

T =T +1 T Ttaskz T TtasK3

loop poll_inputs taski

(as long as worst-case time of tasks is known)

22

‘ Timing analysis + interrupts

void loop() { _p void input_isr() {
taskl(); =
task2(); \}
task3();

}

Assume Ttask1 + Ttaskz + Ttaskg =200 ms

Assume interrupt takes 2 ms and happens at most every 20 ms
Worst case execution time of loop + interrupts =7

23

‘ Other approaches

Time it dynamically
Using special debug registers
Approximate with timer/counter
Issues?

Hybrid (dynamically measure short paths and
statically add it up)

Many tools on the market do this

24

‘ Threads and scheduling

Instead of this CPU schedules each task

void loop() { as its own thread
task1();
task2(); (Teskt Tesk2 ek SN
task3 () 5 Execution time

¥

25

‘ More general multithreading

OS exposes an API for control
(.what OS?))

Library (like pthreads in C) takes care of things

pthread create(&threads[i], NULL, perform work, &thread args([il]);

Scheduler schedules threads

More open to control/data pitfalls

For now: we are talking about single-processor systems

26

