
11: Concurrency

Project matching forms will be
sent out after class today
● Teams will be made up of 4

people
● You can choose one other

person to work with
● Matching will be done based

on project preference

A preview: periodic tasks
n tasks each with a given period and worst case
execution time (for now assume same period)

2

(read and store sensor)

(do complex computation
on last sensor reading)

(log output to server)

What’s the problem with this?
blueTask {

… do stuff; …

pet_watchdog; }

purpleTask {

… do stuff; …

pet_watchdog; }

goldTask {

… do stuff; …

pet_watchdog; } 3

Blocking vs. non-blocking functions
Simplest task
scheduler:

void loop() {

 blueTask();

 purpleTask();

 goldTask();

}

4

Blocking function:
void goldTask() {

 res = 0;

 while (! res) {

 res = serverTask();

 }

 … // compute on res

}

Non-blocking function:
void goldTask() {

 res = serverTask();

 if (res) {

 // compute on res

 }

}

Blocking vs. non-blocking functions
Simplest task
scheduler:

void loop() {

 blueTask();

 purpleTask();

 goldTask();

}

5

Blocking function:
void goldTask() {

 int res = 0;

 while (! res) {

 res = serverSend();

 }

 … // compute on res

 petWatchdog();

}

Non-blocking function:
void goldTask() {

 int res = serverSend();

 if (res) {

 … // compute on res

 petWatchdog();

 }

}

“
How would you pet the

watchdog for a multitasked
system?

6

7

8

Challenge mode

Time and date tales

9

Imperative programs
(using book definition)

Computation is expressed as a sequence of
operations

Each step changes the state of memory on the
machine

10

Threads
Individual imperative programs
that run concurrently and share
a memory space

On single-CPU systems,
technically only one thread is
executing at a given time, but
multiple may be “active”
(pending computation)

Memory (code, data, files)

Heap

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3

11

“
What example of thread-like
behavior have we seen so far

in this class?

12

Interrupts as threads

Main function

ISR

Code in memory Stack

SP

Old PC

Program state
(local variables, etc)

Interrupt type 1: code memory location 1
Interrupt type 2: code memory location 2
….

Interrupt vector table

PC

(From lecture 5)

Interrupt

13

Interrupt’s view of execution

Main function

ISR

Code in memory Stack

SP

Old PC

Program state
(local variables, etc)

PC

Interrupt

14

Main process’ view of execution

Main function

ISR

Code in memory Stack

SP

PC

Before interrupt

Main function

ISR

Code in memory Stack

SP
Old PC

Program state
(local
variables, etc)

PC

After interrupt

15

SP

16

Memory (code, data, files)

Heap

Registers

Stack

Registers

Stack

Main process Interrupt

Main
function

ISR

ISR

“
What are the limitations of

having interrupts as the only
source of concurrency in

embedded programming?

17

Threading-like behavior without library/os/scheduler

“DIY concurrency”

Each task keeps track of the state it needs
void loop() {

 poll_inputs();

 task1();

 task2();

 task3();

} 18

Cyclic Execution

“
Pros/cons to cyclic

execution?

19

20

.

21

Multi-rate cyclic execution

void loop() {

 poll_inputs();

 task1();

 poll_inputs();

 task2();

 poll_inputs();

 task3();

}

Or even…
void loop() {

 poll_inputs();

 task1_step1();

 poll_inputs();

 task1_step2();

 poll_inputs();

 task2_step1();

 poll_inputs();

 task3_step1();

 …
}

void loop() {

 poll_inputs();

 task1();

 task2();

 task3();

}

Worst-case time:

Tloop = Tpoll_inputs + Ttask1 + Ttask2 + Ttask3

(as long as worst-case time of tasks is known)
22

Cyclic Execution timing analysis

Timing analysis + interrupts
void loop() {

 task1();

 task2();

 task3();

}

23

void input_isr() {

 ...

}

Assume Ttask1 + Ttask2 + Ttask3 = 200 ms
Assume interrupt takes 2 ms and happens at most every 20 ms
Worst case execution time of loop + interrupts = ?

24

Other approaches
Time it dynamically

Using special debug registers

Approximate with timer/counter

Issues?

Hybrid (dynamically measure short paths and
statically add it up)

Many tools on the market do this

Threads and scheduling
Instead of this
void loop() {

 task1();

 task2();

 task3();

}

25

CPU schedules each task
as its own thread

Execution time

Task 1 Task 2 Task 1 Task 3

More general multithreading
OS exposes an API for control

(...what OS?!)
Library (like pthreads in C) takes care of things
 pthread_create(&threads[i], NULL, perform_work, &thread_args[i]);

Scheduler schedules threads

More open to control/data pitfalls

For now: we are talking about single-processor systems

26

