
12: Concurrency
Pitfalls

Fill out project matching form by
tomorrow at noon!

“
What are the limitations of

having interrupts as the only
source of concurrency in

embedded programming?

2

Threading-like behavior without library/os/scheduler

“DIY concurrency”

Each task keeps track of the state it needs
void loop() {

 poll_inputs();

 task1();

 task2();

 task3();

} 3

Cyclic Execution

Unlike generalized multi-threading,
task finishes before another task

executes

“
Pros/cons to cyclic

execution?

4

5

.

6

Multi-rate cyclic execution

void loop() {

 poll_inputs();

 task1();

 poll_inputs();

 task2();

 poll_inputs();

 task3();

}

Or even…
void loop() {

 poll_inputs();

 task1_step1();

 poll_inputs();

 task1_step2();

 poll_inputs();

 task2_step1();

 poll_inputs();

 task3_step1();

 …
}

void loop() {

 poll_inputs();

 task1();

 task2();

 task3();

}

Worst-case time:

Tloop = Tpoll_inputs + Ttask1 + Ttask2 + Ttask3

(as long as worst-case time of tasks is known)
7

Cyclic Execution timing analysis

Timing analysis + interrupts
void loop() {

 task1();

 task2();

 task3();

}

8

void input_isr() {

 ...

}

Assume Ttask1 + Ttask2 + Ttask3 = 200 ms
Assume interrupt takes 2 ms, and time between interrupts is at least 20 ms
Worst case execution time of loop + interrupts = ?

11 interrupts can happen in 200ms (if we get unlucky and one is at the beginning of the loop and one is at the
end). Accounting for those interrupts, the loop takes 222ms. In those extra 22 ms, an extra interrupt can happen –
so the worst-case time is 224ms.

“
What are the challenges in

statically computing
worst-case execution time?

9

10

Other approaches
Time it dynamically

Using special debug registers

Approximate with timer/counter

Issues?

Hybrid (dynamically measure short paths and
statically add it up)

Many tools on the market do this

Threads and scheduling
Instead of this
void loop() {

 task1();

 task2();

 task3();

}

11

CPU schedules each task
as its own thread

Execution time

Task 1 Task 2 Task 1 Task 3

Generalized multithreading
OS exposes an API for control

(...what OS?!)
Library (like pthreads in C) takes care of things
 pthread_create(&threads[i], NULL, perform_work, &thread_args[i]);

Scheduler schedules threads

More open to control/data pitfalls

For now: we are talking about single-processor systems

12

Sharing data – circular buffer
Task/thread A: takes from the
start of buffer

Task/thread B: adds to the
end of buffer

start/end constantly
changing, wrap around

13

 0 1 2 3 4 5 6 7

start end

 e

 S

0

1

2

34

5

6

7

Circular buffer computations
Add to buffer: buf[e] = data;
e = (e + 1) % buf_size

14

 e
 S

0

1

2

34

5

6

7

 e

Take from buffer: data = buf[s];
s = (s + 1) % buf_size

 e

 s
 Is empty? s == e

 s/e

Is full? (e + 1) % buf_size == s

 s e

Race condition - circular buffer
n = 4 , s = 2, e = 1

main loop:
// if not empty, take from buffer

if(s != e) {

 Serial.println(buffer[s]);

 s = (s + 1) % n

}

e s

interrupt:
// if still room, store in buffer

if((e + 1) % n != s) {

 buffer[e] = something;

 e = (e + 1) % n

}

15

Race condition: order in which two tasks access a
resource affects outcome of the program

Race condition - circular buffer

main loop:
// if not empty, take from buffer

if(s != e) {

 Serial.println(buffer[s]);

 s = (s + 1) % n

}

e s

interrupt:
// if still room, store in buffer

if((e + 1) % n != s) {

 buffer[e] = something;

 e = (e + 1) % n

}

16

s

Race condition - circular buffer

main loop:
// if not empty, take from buffer

if(s != e) {

 Serial.println(buffer[s]);

 s = (s + 1) % n

}

e s

interrupt:
// if still room, store in buffer

if((e + 1) % n != s) {

 buffer[e] = something;

 e = (e + 1) % n

}

17

se

Memory consistency
w = 1;

x = y;

y = 1;

z = w;

18

Depending on compiler optimization,
“independent” operations may be

rearranged within a thread!!

Can we guarantee that at least one of {x, z} will be 1
by the time both threads finish executing?

Mutual exclusion (mutex/lock)
Mechanism that can only be owned by one thread at
a time

Commonly: blocks execution of thread until lock is acquired

Acquire lock before accessing shared resource, then
release it

pthread_mutex_lock(&x_lock); // blocks until lock is free

//access x

pthread_mutex_unlock(&x_lock);

19

Deadlock

pthread_mutex_lock(&lock1);

pthread_mutex_lock(&lock2);

// thread A task

pthread_mutex_unlock(&lock2);

pthread_mutex_unlock(&lock1);

pthread_mutex_lock(&lock2);

pthread_mutex_lock(&lock1);

// thread B task

pthread_mutex_unlock(&lock1);

pthread_mutex_unlock(&lock2);

20

Priority
Remember interrupt priorities?

Higher-priority interrupt can interrupt lower-priority interrupt but not
the other way around

Task/thread priorities are the same idea
In preemptive system, higher-priority tasks can start executing
before lower-priority tasks are done

Various configuration of # of supported priorities, dynamic vs
static priorities, etc

21

Priority inversion

22

Mutex
acquired

Higher priority task

Lower priority task

Needs
mutex

Lower priority task
(elevated)

Mutex
released

Mutex
acquired

